
more details: tokenguard.io

https://t.me/tokenguard_io
https://twitter.com/Tokenguard_io
https://www.linkedin.com/company/tokenguard-io/mycompany/
https://www.facebook.com/tokenguard
https://tokenguard.io/

Table of contents:

more details: tokenguard.io

1. Tokenguard methodology.....................3
2. Contact background..............................4
3. Project summary...................................4
4. Project overview....................................5
5. List of security checks..........................5
6. Single Code Verification results...........7
7. Liability clause.....................................10
8. Contact details....................................11

https://t.me/tokenguard_io
https://twitter.com/Tokenguard_io
https://www.linkedin.com/company/tokenguard-io/mycompany/
https://www.facebook.com/tokenguard
https://tokenguard.io/

ABOUT TOKENGUARD

more details: tokenguard.io

Tokenguard aggregates the best techniques for smart
contracts automated verification. We are helping teams
design a secure smart contract / token and monitor the
source code for new vulnerabilities and prevent potential
hacks and scams. Tokenguard provides a basic critical
vulnerability verification in less than 12 hours. (We cover
29/36 of the most important security checks from SWC
Registry).

Our mission is to make blockchain safe.

We're using different tools for vulnerability discovery that
are based on 3 technologies - symbolic execution, static
analysis and fuzzing. All of them are specifically designed
for Ethereum Virtual Machine (EVM), which is the smart
contract execution environment. It doesn't matter whether
the contract logic is focused on token creation or swapping
- the tools are set to find critical vulnerabilities that may
exist in each type of contract.

Our auditors verify the output of the tools and deliver
information whether there is vulnerability in the code.

Methodology:

https://t.me/tokenguard_io
https://twitter.com/Tokenguard_io
https://www.linkedin.com/company/tokenguard-io/mycompany/
https://www.facebook.com/tokenguard
https://tokenguard.io/
https://swcregistry.io/

Michał from CleanCarbon contacted us in a need to
perform a smart contract source code verification for their
project. CleanCarbon is a BEP20 token designated for
combining physical energy-from-waste installations with
the crypto world. The contract address is:
0xa52262dA176186105199a597aC8Cf094FF71b0C5. We
provided the code verification of their solidity contract
using our Tokenguard engine and manual review. The team
provided us with the .sol files.

ANALYSIS REPORT

more details: tokenguard.io

Background:

Project:
Blockchain:
Language:
Contract name
Compiler version:
Website:
Request date:
Report date:

CleanCarbon
BSC
Solidity
CarboToken
v0.8.0
https://cleancarbon.io

06/04/2022

Project summary:

29/03/2022

Max supply: 500 000 000

https://t.me/tokenguard_io
https://twitter.com/Tokenguard_io
https://www.linkedin.com/company/tokenguard-io/mycompany/
https://www.facebook.com/tokenguard
https://tokenguard.io/
https://fidira.io/

ANALYSIS REPORT

more details: tokenguard.io

CleanCarbon is a crypto-funded, community-driven crypto
project that aims to clean our planet. It’s a DeFi response to the
world’s pollution.

The project consists of two elements the CARBO token and
 the physical Waste-to-Energy installations

Both elements work together and support each other, bridging
cryptocurrencies and the traditional physical installations.

List of security checks:
SWC - 100 Function Default Visibility

SWC - 101 Integer Overflow and Underflow

SWC - 102 Outdated Compiler Version

SWC - 103 Floating Pragma

SWC - 104 Unchecked Call Return Value

SWC - 105 Unprotected Ether Withdrawal

SWC - 106 Unprotected SELFDESTRUCT Instruction

SWC - 107 Reentrancy

SWC - 108 State Variable Default Visibility

SWC - 109 Uninitialized Storage Pointer

OVERVIEW:

https://t.me/tokenguard_io
https://twitter.com/Tokenguard_io
https://www.linkedin.com/company/tokenguard-io/mycompany/
https://www.facebook.com/tokenguard
https://tokenguard.io/

more details: tokenguard.io

SWC - 110 Assert Violation

SWC - 111 Use of Deprecated Solidity Functions

SWC - 112 Delegatecall to Untrusted Callee

SWC - 113 DoS with Failed Call

SWC - 114 Transaction Order Dependence

SWC - 115 Authorization through tx.origin

SWC - 116 Block values as a proxy for time

SWC - 117 Signature Malleability

SWC - 119 Shadowing State Variables

SWC - 120 Weak Sources of Randomness from Chain Attributes

SWC - 124 Write to Arbitrary Storage Location

SWC - 125 Incorrect Inheritance Order

SWC - 127 Arbitrary Jump with Function Type Variable

SWC - 128 DoS With Block Gas Limit

SWC - 129 Typographical Error

SWC - 130 Right-To-Left-Override control character (U+202E)

ANALYSIS REPORT

https://t.me/tokenguard_io
https://twitter.com/Tokenguard_io
https://www.linkedin.com/company/tokenguard-io/mycompany/
https://www.facebook.com/tokenguard
https://tokenguard.io/

The following report presents the effect of the Tokenguard
basic source code vulnerabilities analysis. This security
check perfomed on 05/04/2022 based on .sol files
provided by CleanCarbon.

We have checked: CarboToken.sol, RecoverableFunds.sol,
WithCallback.sol, VestingWallet.sol, FeeManager.sol,
DividendManager.sol, CrowdSale.sol, Configurator.sol,
FeeHolder.sol

The smart contracts were analyzed for basic critical smart
contract vulnerabilities, exploits and manipulation hacks
according to swcregistry.io.

more details: tokenguard.io

SWC - 131 Presence of unused variables

SWC - 132 Unexpected Ether balance

SWC - 135 Code With No Effects

Summary:

ANALYSIS REPORT

https://t.me/tokenguard_io
https://twitter.com/Tokenguard_io
https://www.linkedin.com/company/tokenguard-io/mycompany/
https://www.facebook.com/tokenguard
http://swcregistry.io/
https://tokenguard.io/

Reentrancy issue in DividendManager.sol file, function:
distributeDividends.
Reentrancy issue in DividendManager.sol file, function:
excludeFromDividends.
Reentrancy issue in VestingWallet.sol file, function:
deposit (uint256 schedule, address[] calldata
beneficiaries, uint256[] calldata amounts)
Reentrancy issue in VestingWallet.sol file, function:
deposit (uint256 schedule, address beneficiary, uint256
amount)

The CleanCarbon's basic critical vulnerability verification
has found the following issues:

1.

2.

3.

4.

Those remarks were shared with the CleanCarbon Tech
Team and they responded:

"All 4 comments relate to the same case: re-entry attack. The
case will work only if the administrator purposefully replaces
the address of the token with the address of another ERC-20
token, in which the transferFrom method contains code to
attack our smart contract.

Accordingly, the vulnerability can be implemented only if the
attacker received the owner's private key.

more details: tokenguard.io

ANALYSIS REPORT

online version: here

https://t.me/tokenguard_io
https://twitter.com/Tokenguard_io
https://www.linkedin.com/company/tokenguard-io/mycompany/
https://www.facebook.com/tokenguard
https://tokenguard.io/
https://tokenguard.io/ratings/carbo

CleanCarbon team has decided there is no risk in leaving the
code without any changes."

The project has passed the verification and is Verified with
TokenGuard

more details: tokenguard.io

ANALYSIS REPORT

online version: here

https://t.me/tokenguard_io
https://twitter.com/Tokenguard_io
https://www.linkedin.com/company/tokenguard-io/mycompany/
https://www.facebook.com/tokenguard
https://tokenguard.io/
https://tokenguard.io/ratings/carbo

ABOUT TOKENGUARD

more details: tokenguard.io

Tokenguard.io is the first automated rating agency for
Ethereum and other blockchains. We use the most
sophisticated tools to find bugs in tokens that would allow
hackers take over your funds.

Tokenguard.io supports the construction of secure
blockchain infrastructure for fintech and enterprise
customers around the world.

LIABILITY CLAUSE
Please note that Tokenguard.io doesn’t verify the
economic foundation of the project but only its code
correctness and security issues. We do not take any
responsibility for any misuse or misunderstanding of
the information provided and potential economic
losses due to faulty investment decisions. This
document doesn’t ensure that the code itself is free
from potential vulnerabilities that were not found. If
any questions arise please contact us via
www.tokenguard.io.

https://t.me/tokenguard_io
https://twitter.com/Tokenguard_io
https://www.linkedin.com/company/tokenguard-io/mycompany/
https://www.facebook.com/tokenguard
https://tokenguard.io/
http://tokenguard.io/

Thank you for your attention!

in terms of any additional questions please contact: tom@tokenguard.io

more details: tokenguard.io

https://t.me/tokenguard_io
https://twitter.com/Tokenguard_io
https://www.linkedin.com/company/tokenguard-io/mycompany/
https://www.facebook.com/tokenguard
https://tokenguard.io/

