
Security Assessment

CleanCarbon
CertiK Assessed on Sept 18th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

2 Major 1 Resolved, 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

2 Medium 1 Resolved, 1 Partially Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

3 Minor 2 Resolved, 1 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

8 Informational 6 Resolved, 2 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY CLEANCARBON

CertiK Assessed on Sept 18th, 2023

CleanCarbon

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Other

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 09/18/2023

KEY COMPONENTS

N/A

CODEBASE
https://github.com/sotatek-dev/clean-carbon

https://github.com/CleanCarbon

View All in Codebase Page

COMMITS
base: 37268ef0ecfaf3f166707071830b41854b34a5ab

update1: 16de6575939b2afd15afefb41c0bad04daeea426

update2: da29bd77cb376fc098d959cbcd1be65eac077252

View All in Codebase Page

15
Total Findings

10
Resolved

0
Mitigated

1
Partially Resolved

4
Acknowledged

0
Declined

https://github.com/sotatek-dev/clean-carbon
https://github.com/CleanCarbon
https://github.com/sotatek-dev/clean-carbon/tree/37268ef0ecfaf3f166707071830b41854b34a5ab
https://github.com/CleanCarbon/CARBO-v2/commit/16de6575939b2afd15afefb41c0bad04daeea426
https://github.com/CleanCarbon/CARBO-v2/commit/da29bd77cb376fc098d959cbcd1be65eac077252

TABLE OF CONTENTS CLEANCARBON

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

CON-10 : Centralization Related Risks

CTC-01 : Incorrect `secondsPerMonth`

CTB-01 : Rewards For `teamDev` Can Be Released Early

SCB-01 : `emergencyWithdraw()` Can Transfer Users Staked Tokens

CON-01 : Missing Zero Address Validation

CON-03 : Locked Ether

CTB-02 : Minting To `address(1)`

CON-04 : Typos

CON-05 : Missing Emit Events

CON-07 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

CON-09 : `changeAdminRole()` Restriction

CTB-04 : Time Units Can Be Used Directly

GIT-01 : Unused Parameters And Variables

GIT-02 : Calling Void Constructor

SCB-02 : `isActive` Discussion

Optimizations

ACB-01 : `ADMIN` Role Not Used In `AirdropCarbonv2`

CON-08 : Variables That Could Be Declared as Immutable

CTB-06 : Unnecessary Check

SCB-04 : Can Use `delete` To Save Gas

SCC-03 : Possibly Inefficient Memory Parameter

Formal Verification

Considered Functions And Scope

Verification Results

TABLE OF CONTENTS CLEANCARBON

Appendix

Disclaimer

TABLE OF CONTENTS CLEANCARBON

CODEBASE CLEANCARBON

Repository

https://github.com/sotatek-dev/clean-carbon

https://github.com/CleanCarbon

Commit

base: 37268ef0ecfaf3f166707071830b41854b34a5ab

update1: 16de6575939b2afd15afefb41c0bad04daeea426

update2: da29bd77cb376fc098d959cbcd1be65eac077252

CODEBASE CLEANCARBON

https://github.com/sotatek-dev/clean-carbon
https://github.com/CleanCarbon
https://github.com/sotatek-dev/clean-carbon/tree/37268ef0ecfaf3f166707071830b41854b34a5ab
https://github.com/CleanCarbon/CARBO-v2/commit/16de6575939b2afd15afefb41c0bad04daeea426
https://github.com/CleanCarbon/CARBO-v2/commit/da29bd77cb376fc098d959cbcd1be65eac077252

AUDIT SCOPE CLEANCARBON

4 files audited 3 files with Acknowledged findings 1 file without findings

ID Repo Commit File SHA256 Checksum

ACB

sotatek-

dev/clean-

carbon

37268ef contracts/AirdropCarbonv2.sol
8230357941b56f9f3256274401f7aec06c8d2

690afcb8e716ea4e352bd0596ba

CTB

sotatek-

dev/clean-

carbon

37268ef contracts/CarboTokenv2.sol
32000612fa346af668a369d383918e22e898

71c4f64b86c7ab93c7a7e5756b20

SCB

sotatek-

dev/clean-

carbon

37268ef contracts/StakingCarbon.sol
0bef2b7c535980acfe2530adfaffeae13d6dd9

44f8cb840da90521565b5f84a2

ICT

sotatek-

dev/clean-

carbon

37268ef
contracts/v1/interfaces/ICarboToke

n.sol

4ed789fe1023c550c1a5106a06f819901b5df

0c381710cbb0eca6123bc154e17

AUDIT SCOPE CLEANCARBON

APPROACH & METHODS CLEANCARBON

This report has been prepared for CleanCarbon to discover issues and vulnerabilities in the source code of the CleanCarbon

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS CLEANCARBON

FINDINGS CLEANCARBON

This report has been prepared to discover issues and vulnerabilities for CleanCarbon. Through this audit, we have

uncovered 15 issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

CON-10 Centralization Related Risks Centralization Major Acknowledged

CTC-01 Incorrect secondsPerMonth Logical Issue Major Resolved

CTB-01
Rewards For teamDev Can Be Released

Early
Logical Issue Medium Partially Resolved

SCB-01
emergencyWithdraw() Can Transfer Users

Staked Tokens
Logical Issue Medium Resolved

CON-01 Missing Zero Address Validation Volatile Code Minor Resolved

CON-03 Locked Ether Coding Issue Minor Resolved

CTB-02 Minting To address(1) Logical Issue Minor Acknowledged

CON-04 Typos Coding Style Informational Resolved

CON-05 Missing Emit Events Coding Style Informational Resolved

CON-07
Unchecked ERC-20 transfer() /

transferFrom() Call
Volatile Code Informational Resolved

CON-09 changeAdminRole() Restriction Coding Style Informational Acknowledged

FINDINGS CLEANCARBON

15
Total Findings

0
Critical

2
Major

2
Medium

3
Minor

8
Informational

ID Title Category Severity Status

CTB-04 Time Units Can Be Used Directly Coding Issue Informational Resolved

GIT-01 Unused Parameters And Variables Coding Style Informational Resolved

GIT-02 Calling Void Constructor Coding Style Informational Acknowledged

SCB-02 isActive Discussion Logical Issue Informational Resolved

FINDINGS CLEANCARBON

CON-10 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major

contracts/AirdropCarbonv2.sol (base): 30, 48; contracts/Ca

rboTokenv2.sol (base): 91, 128, 133; contracts/StakingCarb

on.sol (base): 49, 54, 134

Acknowledged

Description

In the contract CarboTokenv2 the role ADMIN has authority over the functions shown in the diagram below. Any

compromise to the ADMIN account may allow the hacker to take advantage of this authority and change the address of the

ADMIN role or send the tokens allocated for airdrop to any address that they wish.

Authenticated Role

Function

Function Calls

Function

State Variables

Function Calls

Function Calls

Function Calls

ADMIN

changeAdminRole

releaseForAirdrop

_grantRole

_revokeRole

releaseDone

decimals

_mint

CON-10 CLEANCARBON

In the contract StakingCarbon the role ADMIN has authority over the functions shown in the diagram below. Any

compromise to the ADMIN account may allow the hacker to take advantage of this authority and change the address with

the ADMIN role or add any staking option they wish.

Function

Function Calls

Function Calls

Function State Variables

Function Calls

Authenticated Role changeAdminRole

_revokeRole

_grantRole

addStakingPayload stakingOptionsLength

StakingOptions

ADMIN

In the contract AirdropCarbonv2 the role ADMIN has authority over the functions shown in the diagram below. Any

compromise to the ADMIN account may allow the hacker to take advantage of this authority and change the address of the

ADMIN role.

Authenticated Role Function

Function Calls

Function Calls

ADMIN changeAdminRole

_revokeRole

_grantRole

In the contract CarboTokenv2 , StakingCarbon , and AirdropCarbonv2 the role DEFAULT_ADMIN_ROLE has authority over

the functions shown in the diagram below. Any compromise to the DEFAULT_ADMIN_ROLE account may allow the hacker to

take advantage of this authority and withdraw any ERC20 token held by the contract.

CON-10 CLEANCARBON

Function Function CallsAuthenticated Role

emergencyWithdraw IERC20DEFAULT_ADMIN_ROLE

In addition, the DEFAULT_ADMIN_ROLE can also grant or revoke the ADMIN role.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We recommend carefully managing

the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of short-

term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement;

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

CON-10 CLEANCARBON

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles;

OR

Remove the risky functionality.

Alleviation

[CleanCarbon, 09/07/2023] : Acknowledged. We are aware that if the Admin wallet was ever compromised, there would

be very serious issues. We take all necessary precautions to make sure our private keys stay safe.

CON-10 CLEANCARBON

CTC-01 INCORRECT secondsPerMonth

Category Severity Location Status

Logical Issue Major contracts/CarboTokenv2.sol (update1): 16 Resolved

Description

There are 86_400 seconds in a day, so there are 86_400*30 = 2_592_000 seconds per month (assuming the convention

that a month always counts as 30 days). However, the constant secondPerMonth is set to 259_200 , which is the amount

of seconds per 3 days. This will cause the amount that is to be rewarded each month for the team developers to be rewarded

every 3 days.

Recommendation

We recommend changing the value of secondsPerMonth to be 2_592_000 .

Alleviation

[CertiK, 09/17/2023] : The client made the recommended changes in commit:

04d99e3523957ccf47b736f3addcc4abea9b02c2.

CTC-01 CLEANCARBON

https://github.com/CleanCarbon/CARBO-v2/commit/04d99e3523957ccf47b736f3addcc4abea9b02c2

CTB-01 REWARDS FOR teamDev CAN BE RELEASED EARLY

Category Severity Location Status

Logical Issue Medium contracts/CarboTokenv2.sol (base): 97~118 Partially Resolved

Description

The latestUpdateForTeamDev in the constructor() can be set to any initial value. In particular, it can be set to a value

that is not a multiple of secondsPerMonth , which allows for rewards to be released earlier than expected.

In addition, latestUpdateForTeamDev is set in the constructor() with no upper or lower bounds. If this value is set to a

low value accidentally, then it is possible for the teamDev to be rewarded the maxTokenForDev as soon as the contract is

deployed. If this value is set to a value much higher than the block.timestamp , then the teamDev may not be eligible for

rewards when they should.

Scenario

Scenario 1:

For simplicity assume that the contract is deployed with latestUpdateForTeamDev set to 2_591_999 in the

constructor() and is deployed when the current block.timestamp is less than 2_591_999 .

rewardForTeamDev() is then called when the block.timestamp = 2_592_000 , so that only 1 second has passed

since the initial latestUpdateForTeamDev .

However, in the calculation tillTime = (block.timestamp / secondsPerMonth) = 1 while fromTime =

(latestUpdateForTeamDev / secondsPerMonth) = 0 as it will be rounded down. Thus the multiplier will be 1

causing the reward that should only be given after a month to be given out after 1 second.

Scenario 2:

Assume that the contract is deployed with latestUpdateForTeamDev set to 0 .

rewardForTeamDev() is then called with the current block.timestamp , which will cause the maxTokenForDev to

be minted to the teamDev .

Recommendation

We recommend setting reasonable upper and lower bounds for the latestUpdateForTeamDev in the constructor and also

checking it is a multiple of secondsPerMonth .

Alleviation

CTB-01 CLEANCARBON

[CertiK, 09/17/2023] : The client added logic to ensure that latestUpdateForTeamDev is a multiple of seconds per

month in commit: 4062b1f635a30d20b9fed77a4e90f708bde291fd.

However, no bounds were set so we mark this finding as partially resolved considering scenario 2 is still possible.

CTB-01 CLEANCARBON

https://github.com/CleanCarbon/CARBO-v2/commit/4062b1f635a30d20b9fed77a4e90f708bde291fd

SCB-01 emergencyWithdraw() CAN TRANSFER USERS STAKED

TOKENS

Category Severity Location Status

Logical Issue Medium contracts/StakingCarbon.sol (base): 134~143 Resolved

Description

In the contract stakingCarbon , users stake mainToken in the contract. The emergencyWithdraw() function allows the

DEFAULT_ADMIN_ROLE to withdraw any ERC20 token from the contract, including the staked mainToken of users.

Scenario

The address that has the DEFAULT_ADMIN_ROLE calls emergencyWithdraw() with the input address of mainToken . This

then transfers the contracts balance to the msg.sender including all tokens that have been staked by users.

Recommendation

We recommend ensuring the emergencyWithdraw() function cannot withdraw tokens that have been staked by users.

Alleviation

[CertiK, 09/12/2023] : The client made the recommended changes in commit:

ab604f54afa79ddc987bb5b31fd2afa8fb07a928.

SCB-01 CLEANCARBON

https://github.com/CleanCarbon/CARBO-v2/commit/ab604f54afa79ddc987bb5b31fd2afa8fb07a928

CON-01 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

contracts/AirdropCarbonv2.sol (base): 26, 27; contracts/StakingCarbon.s

ol (base): 46
Resolved

Description

Addresses should be checked before assignment or external call to make sure they are not zero addresses.

26 carboV1Addr = _tokenV1;

_tokenV1 is not zero-checked before being used.

27 carboV2Addr = _tokenV2;

_tokenV2 is not zero-checked before being used.

46 mainToken = _mainToken;

_mainToken is not zero-checked before being used.

Recommendation

We recommend adding a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[CertiK, 09/12/2023] : The client made the recommended changes in the following commits:

4386676ce82a272de1d702262ad419b26a25fb94;

6ef876690b2821253db2237a13637987496650b2.

CON-01 CLEANCARBON

https://github.com/CleanCarbon/CARBO-v2/commit/4386676ce82a272de1d702262ad419b26a25fb94
https://github.com/CleanCarbon/CARBO-v2/commit/6ef876690b2821253db2237a13637987496650b2

CON-03 LOCKED ETHER

Category Severity Location Status

Coding

Issue
Minor

contracts/CarboTokenv2.sol (base): 33; contracts/StakingCarbon.sol (ba

se): 40
Resolved

Description

The contracts StakingCarbon and CarboTokenv2 have payable constructors allowing native tokens to accidentaly be

sent when deploying the contract that will be locked in the contract.

Recommendation

We recommend removing the payable attribute.

Alleviation

[CertiK, 09/12/2023] : The client made the recommended changes in commit:

4386676ce82a272de1d702262ad419b26a25fb94.

CON-03 CLEANCARBON

https://github.com/CleanCarbon/CARBO-v2/commit/4386676ce82a272de1d702262ad419b26a25fb94

CTB-02 MINTING TO address(1)

Category Severity Location Status

Logical Issue Minor contracts/CarboTokenv2.sol (base): 39~43 Acknowledged

Description

On contract deployment 80_000_000 tokens are minted to address(1) , which is a null address and will cause those

tokens to be unusable. As the tokens are not available, they should not be accounted for in the total supply. However, as they

are minted to address(1) , they will be included in the total supply of the token.

Proof of Concept

The function _mint() from OpenZeppelin's ERC20 contract:

function _mint(address account, uint256 amount) internal virtual {

 require(account != address(0), "ERC20: mint to the zero address");

 _beforeTokenTransfer(address(0), account, amount);

 _totalSupply += amount;

 unchecked {

 // Overflow not possible: balance + amount is at most totalSupply +

amount, which is checked above.

 _balances[account] += amount;

 }

 emit Transfer(address(0), account, amount);

 _afterTokenTransfer(address(0), account, amount);

 }

Increases the total supply by the input amount .

Recommendation

We recommend removing this portion of code to ensure the total supply is reflective of the tokens in circulation.

Alleviation

[CleanCarbon, 09/07/2023] : Acknowledged. Minting to the null address was done on purpose, and we don't mind the

changes not being accurately reflected in the token's total supply.

CTB-02 CLEANCARBON

CON-04 TYPOS

Category Severity Location Status

Coding

Style
Informational

contracts/AirdropCarbonv2.sol (base): 52; contracts/CarboTokenv

2.sol (base): 18, 136; contracts/StakingCarbon.sol (base): 138
Resolved

Description

In the contract CarboTokenv2 :

The comment below secondsPerMonth is unnecessary and can be deleted.

The comment in the function emergencyWithdraw() is unnecessary and can be deleted.

In the contract AirdropCarbonv2 :

The comment in the function emergencyWithdraw() is unnecessary and can be deleted.

In the contract StakingCarbon :

The comment in the function emergencyWithdraw() is unnecessary and can be deleted.

Recommendation

We recommend fixing the typos mentioned above.

Alleviation

[CertiK, 09/12/2023] : The client made the recommended changes in commit:

4386676ce82a272de1d702262ad419b26a25fb94.

CON-04 CLEANCARBON

https://github.com/CleanCarbon/CARBO-v2/commit/4386676ce82a272de1d702262ad419b26a25fb94

CON-05 MISSING EMIT EVENTS

Category Severity Location Status

Coding

Style
Informational

contracts/AirdropCarbonv2.sol (base): 30, 48; contracts/CarboToke

nv2.sol (base): 91, 128, 133; contracts/StakingCarbon.sol (base): 4

9, 134

Resolved

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles. The functions

linked above do not emit events.

Recommendation

We recommend emitting events for the sensitive functions mentioned above.

Alleviation

[CertiK, 09/12/2023] : The client made the recommended changes in commit:

4386676ce82a272de1d702262ad419b26a25fb94.

CON-05 CLEANCARBON

https://github.com/CleanCarbon/CARBO-v2/commit/4386676ce82a272de1d702262ad419b26a25fb94

CON-07 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile

Code
Informational

contracts/AirdropCarbonv2.sol (base): 53~56; contracts/CarboTok

env2.sol (base): 137~140; contracts/StakingCarbon.sol (base): 13

9~142

Resolved

Description

The emergencyWithdraw() interacts with any possible ERC20 tokens. Since some ERC20 tokens return no values and

others return a bool value, they should be handled with care.

Recommendation

We recommend using the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and

transferFrom() functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a

return value and reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[CertiK, 09/17/2023] : The client made the recommended changes in commit:

59a6c5fbfd37a3609655944385f0649846e87e02.

CON-07 CLEANCARBON

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol
https://github.com/CleanCarbon/CARBO-v2/commit/59a6c5fbfd37a3609655944385f0649846e87e02

CON-09 changeAdminRole() RESTRICTION

Category Severity Location Status

Coding

Style
Informational

contracts/AirdropCarbonv2.sol (base): 30~33; contracts/Carb

oTokenv2.sol (base): 128~131; contracts/StakingCarbon.sol

(base): 49~52

Acknowledged

Description

The function changeAdminRole() can only be called by the ADMIN . However, the DEFAULT_ADMIN_ROLE can still grant and

revoke the ADMIN role through the grantRole() and revokeRole() functions as it is the admin of all roles by default.

This in particular allows there to be multiple addresses with the ADMIN role.

Recommendation

We recommend considering the use of the DEFAULT_ADMIN_ROLE and the grantRole() and revokeRole() functions

instead of the changeAdminRole() function.

Alleviation

[CleanCarbon, 09/07/2023] : Acknowledged. We have a super admin role to grant and revoke any roles, as it should

make our internal workflow easier. In particular, some admins may want to transfer their roles to other wallets owned by

them.

CON-09 CLEANCARBON

CTB-04 TIME UNITS CAN BE USED DIRECTLY

Category Severity Location Status

Coding Issue Informational contracts/CarboTokenv2.sol (base): 17 Resolved

Description

Suffixes like seconds, minutes, hours, days and weeks after literal numbers can be used to specify units of time where

seconds are the base unit and units are considered naively in the following way:

1 == 1 seconds;

1 minutes == 60 seconds;

1 hours == 60 minutes;

1 days == 24 hours;

1 weeks == 7 days;

Recommendation

We recommend using 30 days for secondsPerMonth to increase readability.

Alleviation

[CleanCarbon, 09/07/2023] : The team is used to work with specific data formats where time is defined in seconds, as it

makes it easier to change values while testing. Changing to secondsPerMonth is not necessary.

CTB-04 CLEANCARBON

GIT-01 UNUSED PARAMETERS AND VARIABLES

Category Severity Location Status

Coding

Style
Informational

contracts/StakingCarbon.sol (update1): 32; contracts/CarboToken

v2.sol (base): 12, 30~31
Resolved

Description

In the contract CarboTokenv2 there are paramaters and variables that are never used:

In the constructor() , the parameters buybacks and treasury are never used.

The variable CONTRACT_MANAGER is defined and never used.

Recommendation

We recommend either implementing or removing these parameters and variables.

Alleviation

[CertiK, 09/17/2023] : The client made the recommended changes in commits:

4386676ce82a272de1d702262ad419b26a25fb94;

da29bd77cb376fc098d959cbcd1be65eac077252.

GIT-01 CLEANCARBON

https://github.com/CleanCarbon/CARBO-v2/commit/4386676ce82a272de1d702262ad419b26a25fb94
https://github.com/CleanCarbon/CARBO-v2/commit/da29bd77cb376fc098d959cbcd1be65eac077252

GIT-02 CALLING VOID CONSTRUCTOR

Category Severity Location Status

Coding

Style
Informational

contracts/AirdropCarbonv2.sol (update2): 11; contracts/Stakin

gCarbon.sol (update2): 10; contracts/AirdropCarbonv2.sol (ba

se): 22; contracts/CarboTokenv2.sol (base): 33; contracts/Stak

ingCarbon.sol (base): 41

Acknowledged

Description

Calling an undefined parent constructor has no effect. The constructor() of the contracts AirdropCarbonv2 ,

CarboTokenv2 , and StakingCarbon all call AccessControl() which does not have a defined constructor.

Recommendation

We recommend removing the constructor call.

Alleviation

[CertiK, 09/17/2023] : The client made the recommended changes in commit:

e4cf33ea2feac7356a9a960e653f547db58ae237.

However, in doing so the constructor call to ReentrancyGuard was removed. While the constructor sets the default value,

we still recommend calling all constructors that are not null. Similarly as Pausable was added, we recommend calling its

constructor as well.

[CleanVarbon, 09/18/2023] : Issue acknowledged. We've decided to keep this as it is.

GIT-02 CLEANCARBON

https://github.com/CleanCarbon/CARBO-v2/commit/e4cf33ea2feac7356a9a960e653f547db58ae237

SCB-02 isActive DISCUSSION

Category Severity Location Status

Logical Issue Informational contracts/StakingCarbon.sol (base): 62 Resolved

Description

The ADMIN calls addStakingPayload() , to add additional staking options. This function would not be called unless the

new staking option was intended to be active, as there is no functionality to change if a specific staking option is active. Thus,

the payload does not need a parameter for isActive as it should always be true.

Recommendation

However, we believe it is possible that some staking options may want to be deprecated in the future. If this is the case we

recommend instead adding functionality for the ADMIN to change if a staking option isActive . Note that if this functionality

is added it should be considered if a user should be allowed to unstake() from a pool if it is inactive and their lock duration

has not yet passed.

Alleviation

[CertiK, 09/12/2023] : The client made the recommended changes in commit:

4386676ce82a272de1d702262ad419b26a25fb94.

SCB-02 CLEANCARBON

https://github.com/CleanCarbon/CARBO-v2/commit/4386676ce82a272de1d702262ad419b26a25fb94

OPTIMIZATIONS CLEANCARBON

ID Title Category Severity Status

ACB-01 ADMIN Role Not Used In AirdropCarbonv2 Logical Issue Optimization Resolved

CON-08
Variables That Could Be Declared As

Immutable

Gas

Optimization
Optimization Acknowledged

CTB-06 Unnecessary Check
Gas

Optimization
Optimization Resolved

SCB-04 Can Use delete To Save Gas Coding Style Optimization Acknowledged

SCC-03 Possibly Inefficient Memory Parameter
Gas

Optimization
Optimization Acknowledged

OPTIMIZATIONS CLEANCARBON

https://acc.audit.certikpowered.info/project/fa9db390-bd17-11ed-a514-8dcf87bd1c72/report/new?fid=1678915828219
https://acc.audit.certikpowered.info/project/fa9db390-bd17-11ed-a514-8dcf87bd1c72/report/new?fid=1678887570675
https://acc.audit.certikpowered.info/project/fa9db390-bd17-11ed-a514-8dcf87bd1c72/report/new?fid=1678885455881
https://acc.audit.certikpowered.info/project/fa9db390-bd17-11ed-a514-8dcf87bd1c72/report/new?fid=1678906876057
https://acc.audit.certikpowered.info/project/fa9db390-bd17-11ed-a514-8dcf87bd1c72/report/new?fid=1678318274103

ACB-01 ADMIN ROLE NOT USED IN AirdropCarbonv2

Category Severity Location Status

Logical Issue Optimization contracts/AirdropCarbonv2.sol (base): 14 Resolved

Description

The ADMIN role is only used in the AirdropCarbonv2 contract to restrict changeAdminRole . Since the contract does not

use the ADMIN role to restrict access to any functions not directly related to the role itself, it can be removed.

Recommendation

We recommend removing the ADMIN role from this contract.

Alleviation

[CertiK, 09/12/2023] : The client updated the code to use the ADMIN role in commit:

62534fc5432b97dcf69c37ebae4d4e25bf094ac1.

ACB-01 CLEANCARBON

https://github.com/CleanCarbon/CARBO-v2/commit/62534fc5432b97dcf69c37ebae4d4e25bf094ac1

CON-08 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas

Optimization
Optimization

contracts/AirdropCarbonv2.sol (base): 10, 12; contracts/C

arboTokenv2.sol (base): 8, 14, 20, 21; contracts/StakingC

arbon.sol (base): 28

Acknowledged

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable.

Alleviation

[CleanCarbon, 08/07/2023] : Acknowledged. We don't want to change to immutable variable, in case we decide to change

the contract to proxy in the future. Saving on gas is less important in this case.

CON-08 CLEANCARBON

CTB-06 UNNECESSARY CHECK

Category Severity Location Status

Gas Optimization Optimization contracts/CarboTokenv2.sol (base): 121~124 Resolved

Description

The check in the function _mint() , that capSupply >= amount + totalSupply() is unnecessary as the current

implementation only allows a maximum of 500_000_000 tokens to be minted.

Proof of Concept

The function _mint() is only used in the constructor() , releaseForAirdrop() , and rewardForTeamDev() :

1. In the constructor() , _mint() is used to mint a total of 380_000_000 tokens.

2. In releaseForAirdrop() , this function can only be called once and mints a total of 90_000_000 tokens.

3. In rewardForTeamDev() , this function mints up to the maxTokenForDev , which is 30_000_000 tokens.

Thus the total amount of tokens that can be minted is 380_000_000 + 90_000_000 + 30_000_000 = 500_000_000 tokens.

Recommendation

We recommend removing this unnecessary check to save gas.

Alleviation

[CertiK, 09/12/2023] : The client made the recommended changes in commit:

4386676ce82a272de1d702262ad419b26a25fb94.

CTB-06 CLEANCARBON

https://github.com/CleanCarbon/CARBO-v2/commit/4386676ce82a272de1d702262ad419b26a25fb94

SCB-04 CAN USE delete TO SAVE GAS

Category Severity Location Status

Coding Style Optimization contracts/StakingCarbon.sol (base): 129 Acknowledged

Description

When a user calls unstake() , the userStateStorage[msg.sender] is set back to the default values of 0 by hand. This

can instead be done using the delete operator saving around 4007 gas on deployment and 63 gas on each function call.

See the documentation on delete here: Solidity Delete Documentation.

Recommendation

We recommend using delete instead of setting the values to 0 by hand.

Alleviation

[CleanCarbon, 09/07/2023] : Issue acknowledged. I won't make any changes for the current version.

SCB-04 CLEANCARBON

https://docs.soliditylang.org/en/v0.8.17/types.html?highlight=delete#delete:~:text=after%20the%20change.-,delete,only%20reset%20a%20itself%2C%20not%20the%20value%20it%20referred%20to%20previously.,-//%20SPDX%2DLicense%2DIdentifier

SCC-03 POSSIBLY INEFFICIENT MEMORY PARAMETER

Category Severity Location Status

Gas Optimization Optimization StakingCarbon.sol (0xabc60): 54 Acknowledged

Description

One or more parameters with memory data location are never modified in their functions and those functions are never

called internally within the contract. Thus, their data location can be changed to calldata to avoid the gas consumption

copying from calldata to memory.

54 function addStakingPayload(StakingOptions memory payload)

addStakingPayload has memory location parameters: payload .

This change will increase the deployment cost by around 7813 gas, while saving around 61 gas on each function call.

Recommendation

We recommend changing the parameter's data location to calldata to save gas if the addStakingPayload() is expected

to be called more than 128 times.

Alleviation

[CleanCarbon, 09/07/2023] : Acknowledged, but we decided this optimization is not needed.

SCC-03 CLEANCARBON

FORMAL VERIFICATION CLEANCARBON

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-succeed-self transfer Succeeds on Admissible Self Transfers

erc20-transfer-succeed-normal transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-correct-amount-self transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-change-state transfer Has No Unexpected State Changes

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-transferfrom-revert-from-zero transferFrom Fails for Transfers From the Zero Address

erc20-transfer-never-return-false transfer Never Returns false

FORMAL VERIFICATION CLEANCARBON

Property Name Title

erc20-transfer-recipient-overflow transfer Prevents Overflows in the Recipient's Balance

erc20-transferfrom-revert-to-zero transferFrom Fails for Transfers To the Zero Address

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Non-self Transfers

erc20-transferfrom-succeed-self transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-succeed-normal transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-correct-amount-self transferFrom Performs Self Transfers Correctly

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

erc20-transferfrom-change-state transferFrom Has No Unexpected State Changes

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-transferfrom-never-return-false transferFrom Never Returns false

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-transferfrom-fail-recipient-overflow transferFrom Prevents Overflows in the Recipient's Balance

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-allowance-succeed-always allowance Always Succeeds

erc20-allowance-correct-value allowance Returns Correct Value

erc20-allowance-change-state allowance Does Not Change the Contract's State

FORMAL VERIFICATION CLEANCARBON

Property Name Title

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

erc20-approve-succeed-normal approve Succeeds for Admissible Inputs

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-approve-change-state approve Has No Unexpected State Changes

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-approve-never-return-false approve Never Returns false

Verification Results

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

report. In the following tables, we report such instances as "invalid". The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Detailed Results For Contract CarboTokenv2 (contracts/CarboTokenv2.sol) In Commit
37268ef0ecfaf3f166707071830b41854b34a5ab

FORMAL VERIFICATION CLEANCARBON

Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-correct-amount True

erc20-transfer-succeed-self True

erc20-transfer-succeed-normal True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-false True

erc20-transfer-never-return-false True

erc20-transfer-recipient-overflow False Context not considered

FORMAL VERIFICATION CLEANCARBON

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-correct-amount True

erc20-transferfrom-succeed-self True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

erc20-transferfrom-fail-recipient-overflow False Context not considered

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION CLEANCARBON

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION CLEANCARBON

APPENDIX CLEANCARBON

Finding Categories

Categories Description

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Technical description

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

APPENDIX CLEANCARBON

Assumptions and simplifications

The following assumptions and simplifications apply to our model:

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any of those functions. That

ignores contract invariants and may lead to false positives. It is, however, a safe over-approximation.

The verification engine reasons about unbounded integers. Machine arithmetic is modeled as operations on the

congruence classes arising from the bit-width of the underlying numeric type. This ensures that over- and underflow

characteristics are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to an ERC-20 token contract not being

formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property definitions

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time steps. Our analysis reasons about the contract's state upon entering and

upon leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

started(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond .

willSucceed(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond]) Indicates that execution returns from contract function f in a state satisfying formula

cond . Here, formula cond may refer to the contract's state variables and to the value they had upon entering the

function (using the old function).

reverted(f, [cond]) Indicates that execution of contract function f was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of ERC-20 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply .

In the following, we list those property specifications.

APPENDIX CLEANCARBON

Properties for ERC-20 function transfer

erc20-transfer-revert-zero

Function transfer Prevents Transfers to the Zero Address.

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

Specification:

 [](started(contract.transfer(to, value), to == address(0))

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return)))

erc20-transfer-succeed-normal

Function transfer Succeeds on Admissible Non-self Transfers.

All invocations of the form transfer(recipient, amount) must succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transfer(to, value), to != address(0)

 && to != msg.sender && value >= 0 && value <= _balances[msg.sender]

 && _balances[to] + value <= type(uint256).max && _balances[to] >= 0

 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return)))

erc20-transfer-succeed-self

Function transfer Succeeds on Admissible Self Transfers.

All self-transfers, i.e. invocations of the form transfer(recipient, amount) where the recipient address equals the

address in msg.sender must succeed and return true if

the value in amount does not exceed the balance of msg.sender and

the supplied gas suffices to complete the call.

Specification:

APPENDIX CLEANCARBON

 [](started(contract.transfer(to, value), to != address(0)

 && to == msg.sender && value >= 0 && value <= _balances[msg.sender]

 && _balances[msg.sender] >= 0

 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return)))

erc20-transfer-correct-amount

Function transfer Transfers the Correct Amount in Non-self Transfers.

All non-reverting invocations of transfer(recipient, amount) that return true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

Specification:

 [](willSucceed(contract.transfer(to, value), to != msg.sender

 && _balances[to] >= 0 && value >= 0

 && _balances[to] + value <= type(uint256).max

 && _balances[msg.sender] >= 0 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return

 ==> _balances[msg.sender] == old(_balances[msg.sender]) - value

 && _balances[to] == old(_balances[to]) + value)))

erc20-transfer-correct-amount-self

Function transfer Transfers the Correct Amount in Self Transfers.

All non-reverting invocations of transfer(recipient, amount) that return true and where the recipient address

equals msg.sender (i.e. self-transfers) must not change the balance of address msg.sender .

Specification:

 [](willSucceed(contract.transfer(to, value), to == msg.sender

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return

 ==> _balances[to] == old(_balances[to]))))

erc20-transfer-change-state

Function transfer Has No Unexpected State Changes.

All non-reverting invocations of transfer(recipient, amount) that return true must only modify the balance entries of

the msg.sender and the recipient addresses.

Specification:

APPENDIX CLEANCARBON

 [](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to)

 ==> <>(finished(contract.transfer(to, value), return

 ==> (_totalSupply == old(_totalSupply) && _allowances == old(_allowances)

 && _balances[p1] == old(_balances[p1])))))

erc20-transfer-exceed-balance

Function transfer Fails if Requested Amount Exceeds Available Balance.

Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

Specification:

 [](started(contract.transfer(to, value), value > _balances[msg.sender]

 && _balances[msg.sender] >= 0 && value <= type(uint256).max)

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return)))

erc20-transfer-recipient-overflow

Function transfer Prevents Overflows in the Recipient's Balance.

Any invocation of transfer(recipient, amount) must fail if it causes the balance of the recipient address to overflow.

Specification:

 [](started(contract.transfer(to, value), to != msg.sender

 && _balances[to] + value > type(uint256).max

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max

 && _balances[msg.sender] <= type(uint256).max

 && value > 0 && value <= _balances[msg.sender])

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return) || finished(contract.transfer(to, value), _balances[to]

 > old(_balances[to]) + value - type(uint256).max - 1)))

erc20-transfer-false

If Function transfer Returns false , the Contract State Has Not Been Changed.

If the transfer function in contract contract fails by returning false , it must undo all state changes it incurred before

returning to the caller.

Specification:

APPENDIX CLEANCARBON

 [](willSucceed(contract.transfer(to, value))

 ==> <>(finished(contract.transfer(to, value), !return]

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-transfer-never-return-false

Function transfe Never Returns false .

The transfer function must never return false to signal a failure.

Specification:

 [](!(finished(contract.transfer, !return)))

Properties for ERC-20 function transferFrom

erc20-transferfrom-revert-from-zero

Function transferFrom Fails for Transfers From the Zero Address.

All calls of the form transferFrom(from, dest, amount) where the from address is zero, must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), from == address(0))

 ==> <>(reverted(contract.transferFrom) || finished(contract.transferFrom,

 !return)))

erc20-transferfrom-revert-to-zero

Function transferFrom Fails for Transfers To the Zero Address.

All calls of the form transferFrom(from, dest, amount) where the dest address is zero, must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), to == address(0))

 ==> <>(reverted(contract.transferFrom) || finished(contract.transferFrom,

 !return)))

erc20-transferfrom-succeed-normal

Function transferFrom Succeeds on Admissible Non-self Transfers. All invocations of transferFrom(from, dest,

amount) must succeed and return true if

the value of amount does not exceed the balance of address from ,

APPENDIX CLEANCARBON

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transferFrom(from, to, value), from != address(0)

 && to != address(0) && from != to && value <= _balances[from]

 && value <= _allowances[from][msg.sender]

 && _balances[to] + value <= type(uint256).max

 && value >= 0 && _balances[to] >= 0 && _balances[from] >= 0

 && _balances[from] <= type(uint256).max

 && _allowances[from][msg.sender] >= 0

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return)))

erc20-transferfrom-succeed-self

Function transferFrom Succeeds on Admissible Self Transfers.

All invocations of transferFrom(from, dest, amount) where the dest address equals the from address (i.e. self-

transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transferFrom(from, to, value), from != address(0)

 && from == to && value <= _balances[from]

 && value <= _allowances[from][msg.sender]

 && value >= 0 && _balances[from] <= type(uint256).max

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return)))

erc20-transferfrom-correct-amount

Function transferFrom Transfers the Correct Amount in Non-self Transfers.

All invocations of transferFrom(from, dest, amount) that succeed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

Specification:

APPENDIX CLEANCARBON

 [](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0

 && _balances[from] >= 0 && _balances[from] <= type(uint256).max

 && _balances[to] >= 0 && _balances[to] + value <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> _balances[from] == old(_balances[from]) - value

 && _balances[to] == old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

Function transferFrom Performs Self Transfers Correctly.

All non-reverting invocations of transferFrom(from, dest, amount) that return true and where the address in from

equals the address in dest (i.e. self-transfers) do not change the balance entry of the from address (which equals

dest).

Specification:

 [](willSucceed(contract.transferFrom(from, to, value), from == to

 && value >= 0 && value <= type(uint256).max && _balances[from] >= 0

 && _balances[from] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

Function transferFrom Updated the Allowance Correctly.

All non-reverting invocations of transferFrom(from, dest, amount) that return true must decrease the allowance for

address msg.sender over address from by the value in amount .

Specification:

 [](willSucceed(contract.transferFrom(from, to, value), value >= 0

 && value <= type(uint256).max && _balances[from] >= 0

 && _balances[from] <= type(uint256).max && _balances[to] >= 0

 && _balances[to] <= type(uint256).max && _allowances[from][msg.sender] >= 0

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> ((_allowances[from][msg.sender]

 == old(_allowances[from][msg.sender]) - value)

 || (_allowances[from][msg.sender]

 == old(_allowances[from][msg.sender])

 && (from == msg.sender

 || old(_allowances[from][msg.sender])

 == type(uint256).max))))))

erc20-transferfrom-change-state

APPENDIX CLEANCARBON

Function transferFrom Has No Unexpected State Changes.

All non-reverting invocations of transferFrom(from, dest, amount) that return true may only modify the following state

variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender for the address in from . Specification:

 [](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to

 && (p2 != from || p3 != msg.sender))

 ==> <>(finished(contract.transferFrom(from, to, amount), return

 ==> (_totalSupply == old(_totalSupply) && _balances[p1] == old(_balances[p1])

 && _allowances[p2][p3] == old(_allowances[p2][p3])))))

erc20-transferfrom-fail-exceed-balance

Function transferFrom Fails if the Requested Amount Exceeds the Available Balance.

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), value > _balances[from]

 && _balances[from] >= 0 && _balances[from] <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom, !return)))

erc20-transferfrom-fail-exceed-allowance

Function transferFrom Fails if the Requested Amount Exceeds the Available Allowance.

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), value > _allowances[from]

[msg.sender]

 && _allowances[from][msg.sender] >= 0 && value <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom(from, to, value), !return)

 || finished(contract.transferFrom(from, to, value), return

 && (msg.sender == from

 || _allowances[from][msg.sender] == type(uint256).max))))

APPENDIX CLEANCARBON

erc20-transferfrom-fail-recipient-overflow

Function transferFrom Prevents Overflows in the Recipient's Balance.

Any call of transferFrom(from, dest, amount) with a value in amount whose transfer would cause an overflow of the

balance of address dest must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), from != to

 && _balances[to] + value > type(uint256).max && value <= type(uint256).max

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom(from, to, value), !return)

 || finished(contract.transferFrom(from, to, value), _balances[to]

 > old(_balances[to]) + value - type(uint256).max - 1)))

erc20-transferfrom-false

If Function transferFrom Returns false , the Contract's State Has Not Been Changed.

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

Specification:

 [](willSucceed(contract.transfer(to, value))

 ==> <>(finished(contract.transfer(to, value), !return

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-transferfrom-never-return-false

Function transferFrom Never Returns false .

The transferFrom function must never return false .

Specification:

 [](!(finished(contract.transferFrom, !return)))

Properties related to function totalSupply

erc20-totalsupply-succeed-always

Function totalSupply Always Succeeds.

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

APPENDIX CLEANCARBON

Specification:

 [](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

Function totalSupply Returns the Value of the Corresponding State Variable.

The totalSupply function must return the value that is held in the corresponding state variable of contract contract.

Specification:

 [](willSucceed(contract.totalSupply)

 ==> <>(finished(contract.totalSupply, return == _totalSupply)))

erc20-totalsupply-change-state

Function totalSupply Does Not Change the Contract's State.

The totalSupply function in contract contract must not change any state variables.

Specification:

 [](willSucceed(contract.totalSupply)

 ==> <>(finished(contract.totalSupply, _totalSupply == old(_totalSupply)

 && _balances == old(_balances) && _allowances == old(_allowances))))

Properties related to function balanceOf

erc20-balanceof-succeed-always

Function balanceOf Always Succeeds.

Function balanceOf must always succeed if it does not run out of gas.

Specification:

 [](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

Function balanceOf Returns the Correct Value.

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

APPENDIX CLEANCARBON

 [](willSucceed(contract.balanceOf)

 ==> <>(finished(contract.balanceOf(owner), return == _balances[owner])))

erc20-balanceof-change-state

Function balanceOf Does Not Change the Contract's State.

Function balanceOf must not change any of the contract's state variables.

Specification:

 [](willSucceed(contract.balanceOf)

 ==> <>(finished(contract.balanceOf(owner), _totalSupply == old(_totalSupply)

 && _balances == old(_balances)

 && _allowances == old(_allowances))))

Properties related to function allowance

erc20-allowance-succeed-always

Function allowance Always Succeeds.

Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

 [](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value

Function allowance Returns Correct Value.

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

Specification:

 [](willSucceed(contract.allowance(owner, spender))

 ==> <>(finished(contract.allowance(owner, spender),

 return == _allowances[owner][spender])))

erc20-allowance-change-state

Function allowance Does Not Change the Contract's State.

Function allowance must not change any of the contract's state variables.

APPENDIX CLEANCARBON

Specification:

 [](willSucceed(contract.allowance(owner, spender))

 ==> <>(finished(contract.allowance(owner, spender),

 _totalSupply == old(_totalSupply) && _balances == old(_balances)

 && _allowances == old(_allowances))))

Properties related to function approve

erc20-approve-revert-zero

Function approve Prevents Giving Approvals For the Zero Address.

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

 [](started(contract.approve(spender, value), spender == address(0))

 ==> <>(reverted(contract.approve)

 || finished(contract.approve(spender, value), !return)))

erc20-approve-succeed-normal

Function approve Succeeds for Admissible Inputs.

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

Specification:

 [](started(contract.approve(spender, value), spender != address(0))

 ==> <>(finished(contract.approve(spender, value), return)))

erc20-approve-correct-amount

Function approve Updates the Approval Mapping Correctly.

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

APPENDIX CLEANCARBON

 [](willSucceed(contract.approve(spender, value), spender != address(0)

 && value >= 0 && value <= type(uint256).max)

 ==> <>(finished(contract.approve(spender, value), return

 ==> _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

Function approve Has No Unexpected State Changes.

All calls of the form approve(spender, amount) must only update the allowance mapping according to the address

msg.sender and the values of spender and amount and incur no other state changes.

Specification:

 [](willSucceed(contract.approve(spender, value), spender != address(0)

 && (p1 != msg.sender || p2 != spender))

 ==> <>(finished(contract.approve(spender, value), return

 ==> _totalSupply == old(_totalSupply) && _balances == old(_balances)

 && _allowances[p1][p2] == old(_allowances[p1][p2]))))

erc20-approve-false

If Function approve Returns false , the Contract's State Has Not Been Changed.

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

Specification:

 [](willSucceed(contract.approve(spender, value))

 ==> <>(finished(contract.approve(spender, value), !return

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-approve-never-return-false

Function approve Never Returns false .

The function approve must never returns false .

Specification:

 [](!(finished(contract.approve, !return)))

APPENDIX CLEANCARBON

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER CLEANCARBON

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER CLEANCARBON

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

CleanCarbon Security Assessment CertiK Assessed on Sept 18th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

